Compléments d'Analyse

Isabelle Gruais Université de Rennes 1

25 novembre 2021

Introduction

Chapitre 1

Espaces de Hilbert

Dans la suite $\mathbb{K} = \mathbb{C}$, sauf cas particulier où $\mathbb{K} = \mathbb{R}$.

1.1 Forme sesquilinéaire et produit scalaire

Définition 1.1.1. Une application $f:E\to F$ entre deux ev sur $\mathbb C$ est antilinéaire si

- 1. $\forall x, y \in E$, f(x+y) = f(x) + f(y),
- 2. $\forall x \in E$, $\forall \lambda \in \mathbb{C}$, $f(\lambda x) = \overline{\lambda}f(x)$.

Définition 1.1.2. Soit E un ev sur \mathbb{K} .

- 1. On appelle forme sesquilinéaire (à droite) sur $\mathbb K$ toute application $f:E\times E\to \mathbb K$ vérifiant. :
 - (a) f est linéaire à gauche, i.e. $\forall y \in E, x \mapsto f(x,y)$ est linéaire;
 - (b) f est antilinéaire à droite , i.e. $\forall x \in E, y \mapsto f(x,y)$ est antilinéaire Par convention, si $\mathbb{K} = \mathbb{R}$, une forme sesquilinéaire est bilinéaire.
- 2. Une forme sesquilinéaire f est hermitienne si $\mathbb{K} = \mathbb{C}$, resp. symétrique si $\mathbb{K} = \mathbb{R}$, si en outre $f(x,y) = \overline{f(y,x)}$, resp. f(x,y) = f(y,x), $\forall x,y \in E$.

Proposition 1.1.1. Si $\varphi : E \times E \to \mathbb{K}$ est une forme sesquilinéaire, alors : $\forall x, y \in E$,

$$\varphi(x+y,x+y) + \varphi(x-y,x-y) = 2\varphi(x,x) + 2\varphi(y,y).$$

Démonstration. Soit $x, y \in E$. On a

$$\varphi(x+y,x+y) = \varphi(x,x) + \varphi(x,y) + \varphi(y,x) + \varphi(y,y),$$

$$\varphi(x - y, x - y) = \varphi(x, x) - \varphi(x, y) - \varphi(y, x) + \varphi(y, y),$$

Proposition 1.1.2. Si $\varphi: E \times E \to \mathbb{K}$ est une forme sesquilinéaire, alors : $\forall x, y \in E$,

1.
$$\varphi(x+y, x+y) - \varphi(x-y, x-y) = 2\varphi(x, y) + 2\varphi(y, x)$$
.

П

- 2. Si $\mathbb{K} = \mathbb{R}$ et φ symétrique : $\varphi(x+y,x+y) \varphi(x-y,x-y) = 4\varphi(x,y)$.
- 3. Si $\mathbb{K} = \mathbb{C}$ et φ hermitienne : $\varphi(x+y,x+y) \varphi(x-y,x-y) + i\varphi(x+iy,x+iy) i\varphi(x-iy,x-iy) = 4\varphi(x,y)$.

Démonstration. Soit $x, y \in E$.

1. On a

$$\varphi(x+y,x+y) - \varphi(x-y,x-y) = \varphi(x,x) + \varphi(x,y) + \varphi(y,x) + \varphi(y,y) +$$
$$-\varphi(x,x) + \varphi(x,y) + \varphi(y,x) - \varphi(y,y).$$

- 2. Si $\mathbb{K} = \mathbb{R}$ on utlise ce qui précède avec $\varphi(x,y) = \varphi(y,x)$.
- 3. Si $\mathbb{K} = \mathbb{C}$, alors, en notant \mathbb{U}_4 le groupe des racines quatrièmes de 1 : $\mathbb{U}_4 = \{1, -1, i, -i\}$ et on est ramené à calculer $\sum_{\zeta \in \mathbb{U}_4} \zeta \varphi(x + \zeta y, x + \zeta y)$. On a

$$\sum_{\zeta \in \mathbb{U}_4} \zeta \varphi(x + \zeta y, x + \zeta y) = \sum_{\zeta \in \mathbb{U}_4} \zeta \varphi(x, x) + \sum_{\zeta \in \mathbb{U}_4} |\zeta|^2 \varphi(x, y) + \sum_{\zeta \in \mathbb{U}_4} \zeta^2 \varphi(y, x) + \sum_{\zeta \in \mathbb{U}_4} \zeta \varphi(y, y)$$

 $= 4\varphi(x,y).$

Proposition 1.1.3. Soit φ une forme sesquilinéaire sur un ev E sur \mathbb{C} . Les propositions suivantes sont équivalentes.

- 1. φ est hermitienne.
- 2. $\forall x \in E, \ \varphi(x, x) \in \mathbb{R}$.

Démonstration. Si φ est hermitienne, alors $\varphi(x,x) = \overline{\varphi(x,x)} \Rightarrow \varphi(x,x) \in \mathbb{R}$, $\forall x \in E$.

Inversement, on suppose que $\varphi(x,x) \in \mathbb{R}$, $\forall x \in E$. On pose : $\forall x,y \in E$, $\Phi(x,y) = \varphi(x,y) - \overline{\varphi(y,x)}$. Alors Φ est sesquilinéaire et $\Phi(x,x) = 0$, $\forall \in E$. De la Proposition 1.1.2, on déduit que $\Phi(x,y) = 0$, $\forall x,y \in E$.

Définition 1.1.3. Une forme hermitienne sur un \mathbb{C} -ev est dite positive, resp. définie positive $\forall x \in E \setminus \{0\}, \ \varphi(x,x) \geq 0$, resp. $\varphi(x,x) > 0$.

Proposition 1.1.4. Soit E un ev sur \mathbb{K} et soit φ une forme hermitienne positive sur E. On $a: \forall x, y \in E$,

$$|\varphi(x,y)|^2 \le \varphi(x,x)\varphi(y,y).$$

Démonstration. Soit $x, y \in E$ et soit $\lambda \in \mathbb{C}$ t.q. $\lambda \varphi(x, y) = |\varphi(x, y)|$. Alors $|\lambda| = 1$. Soit $t \in \mathbb{R}$. Par hypothèse sur $\varphi : \varphi(\lambda x + ty, \lambda x + ty) \ge 0$. En développant cette expression, on obtient :

$$\forall t \in \mathbb{R}, \quad |\lambda|^2 \varphi(x, x) + 2t \operatorname{Re}(\lambda \varphi(x, y)) + t^2 \varphi(y, y) \ge 0,$$

avec $2t\text{Re}(\lambda\varphi(x,y)) = 2t|\varphi(x,y)|$. De la théorie des équations du second degré à coefficients réels, on déduit que $4|\varphi(x,y)|^2 - 4\varphi(x,x)\varphi(y,y) \leq 0$.

Définition 1.1.4. Une forme sesquilinéaire définie positive est appelée un produit scalaire. Si E est un ev et si φ est un produit scalaire sur E, on définit une norme sur E en posant

$$\forall x \in E, \quad ||x|| = \sqrt{\varphi(x, x)}.$$

Un espace vectoriel muni d'un produit scalaire est appelé un espace préhilbertien.

Définition 1.1.5. On appelle espace de Hilbert un espace préhilbertien complet pour la norme associée.

Exemple 1. L'espace \mathbb{C}^d est un espace de Hilbert pour le produit scalaire : $(z, z') \mapsto \sum_{k=1}^d \overline{z}_k z'_k$.

Exemple 2. L'espace

$$\ell^{2}(\mathbb{N}) = \{(u_{n})_{n \geq 0} \in \mathbb{C}^{\mathbb{N}}, \sum_{n \geq 0} |u_{n}|^{2} < +\infty\}$$

est un espace de Hilbert pour le produit scalaire

$$(u,v)\mapsto \sum_{n>0}\overline{u}_nv_n$$

1.2 Orthogonalité

Définition 1.2.1. Soit $(H, \langle \cdot, \cdot \rangle)$ un espace préhilbertien sur K. Deux vecteurs $x, y \in H$ sont dits orthogonaux et on note $x \perp y$ si si $\langle x, y \rangle = 0$. Si $A \subset H$, l'orthogonal de A dans H est le sev de H défini par :

$$A^{\perp} = \{ x \in H \mid \forall a \in A, \langle x, a \rangle = 0 \}.$$

Proposition 1.2.1. Soit E un espace préhilbertien. Alors :

- 1. $Si \mathbb{K} = \mathbb{R}, \forall x, y \in E, x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2.$
- 2. $Si \mathbb{K} = \mathbb{C}, \forall x, y \in E, x \perp y \iff ||x+y||^2 = ||x||^2 + ||y||^2 \ et \ ||x+iy||^2 = ||x||^2 + ||y||^2.$
- 3. Si $A \subset B \subset E$ alors $B^{\perp} \subset A^{\perp}$.
- 4. Si $A \subset E$, alors $A \subset (A^{\perp})^{\perp}$.

Démonstration. On utilise le développement :

$$||x + y||^2 = ||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2$$

avec $\operatorname{Re}\langle x, iy \rangle = \operatorname{Im}\langle x, y \rangle$.

1.3 Projection hilbertienne

Théorème 1.3.1. Soit E un espace préhibertien et soit $C \subset E$ un convexe complet. Alors : $\forall x \in E$, il existe $a \in C$ unique t.q. ||x - a|| = d(x, C). L'application $p_C : E \to C$, $x \mapsto a$ ainsi définie est caractérisée par :

$$p_C(x) \in C$$
 et $\forall y \in C$, $\operatorname{Re}\langle x - p_C(x), y - p_C(x) \rangle < 0$.

Démonstration. Soit $(x_n)_{n>0} \in C$ définie par :

$$\forall n \ge 0, \quad x_n \in C \quad \text{et} \quad d(x, C) \le ||x - x_n|| \le d(x, C) + \frac{1}{n}$$

On a : $\forall n, p \ge 0$,

$$||x_{n+p} - x_n|| = ||x - x_{n+p} - (x - x_n)||$$

avec

$$||x - x_{n+p} - (x - x_n)||^2 + ||(x - x_{n+p}) + (x - x_n)||^2 = 2||x - x_{n+p}||^2 + 2||x - x_n||^2$$

$$\iff ||x_{n+p} - x_n||^2 + 4||x - \frac{1}{2}(x_{n+p} + x_n)||^2 = 2||x - x_{n+p}||^2 + 2||x - x_n||^2.$$

On en déduit

$$||x_{n+p} - x_n||^2 \le 4\left(d(x,C) + \frac{1}{n}\right)^2 - 4||x - \frac{1}{2}(x_{n+p} + x_n)||^2 =$$

$$= 4\left(d(x,C)^2 - ||x - \frac{1}{2}(x_{n+p} + x_n)||^2\right) + \frac{8}{n}d(x,C) + \frac{4}{n^2} \le \frac{8}{n}d(x,C) + \frac{4}{n^2}$$

car C convexe $\Rightarrow \frac{1}{2}(x_n + x_{n+p}) \in C$. Il en résulte que $(x_n)_{n\geq 0}$ est de Cauchy dans C complet donc convergente vers $a \in C$.

Par construction $\lim_{n\to +\infty} \|x-x_n\| = d(x,C)$ donc $\|x-a\| = d(x,C)$. On suppose qu'il existe $a'\in C$ t.q. $\|x-a'\| = d(x,C)$. Alors

$$||a - a'||^2 + 4||x - \frac{1}{2}(a + a')||^2 = 2||x - a||^2 + 2||x - a'||^2 = 4d(x, C)^2$$

donc

$$||a - a'||^2 = 4d(x, C)^2 - 4||x - \frac{1}{2}(a + a')||^2 \le 0$$

i.e. a = a'. On note $p_C(x) = a$.

Soit $y \in C$ et soit $t \in]0,1[$. On a

$$||x - tp_{C}(x) - (1 - t)y||^{2} = ||t(x - p_{C}(x)) + (1 - t)(x - y)||^{2} =$$

$$= t^{2}||x - p_{C}(x)||^{2} + (1 - t)^{2}||x - y||^{2} + 2t(1 - t)\operatorname{Re}\langle x - p_{C}(x), x - y\rangle$$

$$= t^{2}||x - p_{C}(x)||^{2} + (1 - t)^{2}||x - y||^{2} + 2t(1 - t)\operatorname{Re}\langle x - p_{C}(x), x - p_{C}(x)\rangle$$

$$+2t(1 - t)\operatorname{Re}\langle x - p_{C}(x), p_{C}(x) - y\rangle$$

$$= (2t - t^{2})||x - p_{C}(x)||^{2} + (1 - t)^{2}||x - y||^{2} + 2t(1 - t)\operatorname{Re}\langle x - p_{C}(x), p_{C}(x) - y\rangle.$$
Alors $tp_{C}(x) + (1 - t)y \in C \Rightarrow$

$$||x - tp_C(x) - (1 - t)y||^2 \ge ||x - p_C(x)||^2$$

i.e. :

$$(2t-t^2)\|x-p_C(x)\|^2 + (1-t)^2\|x-y\|^2 + 2t(1-t)\operatorname{Re}\langle x-p_C(x), p_C(x)-y\rangle \ge \|x-p_C(x)\|^2$$

$$\iff (1-t)^2\|x-y\|^2 + 2t(1-t)\operatorname{Re}\langle x-p_C(x), p_C(x)-y\rangle \ge (1-2t+t^2)\|x-p_C(x)\|^2$$

$$\iff (1-t)^2 \|x-y\|^2 + 2t(1-t)\operatorname{Re}\langle x - p_C(x), p_C(x) - y \rangle \ge (1-t)^2 \|x - p_C(x)\|^2$$

$$\iff 2t(1-t)\operatorname{Re}\langle x - p_C(x), y - p_C(x) \rangle \le (1-t)^2 (\|x-y\|^2 - \|x - p_C(x)\|^2).$$

On divise les deux membres de l'inégalité par 1-t>0. On en déduit :

$$2t\operatorname{Re}\langle x - p_C(x), y - p_C(x)\rangle \le (1 - t)(\|x - y\|^2 - \|x - p_C(x)\|^2).$$

Quand $t \to 1^-$, on obtient :

$$2\operatorname{Re}\langle x - p_C(x), y - p_C(x)\rangle \le 0.$$

Corollaire 1.3.2. Soit E un espace de Hilbert et soit $C \subset E$ un convexe fermé. Alors : $\forall x \in E$, il existe $a \in C$ unique t.q. ||x - a|| = d(x, C). L'application $p_C : E \to C$, $x \mapsto a$ ainsi définie est caractérisée par :

$$p_C(x) \in C$$
 et $\forall y \in C$, $\operatorname{Re}\langle x - p_C(x), y - p_C(x) \rangle \leq 0$.

 $D\acute{e}monstration.$ On est ramené au résultat précédent en remarquant que C est un convexe complet. $\hfill \Box$

Corollaire 1.3.3. Avec les notations du Théorème 1.3.1, l'applicaton p_C est contractante, i.e. vérifie :

$$\forall x, y \in E, \quad ||p_C(x) - p_C(y)|| \le ||x - y||$$

 $D\'{e}monstration$. Le calcul donne :

$$\operatorname{Re}\langle x-y, p_C(x)-p_C(y)\rangle = -\operatorname{Re}\langle x-p_C(x), p_C(y)-p_C(x)\rangle - \operatorname{Re}\langle p_C(x), p_C(y)-p_C(x)\rangle$$
$$-\operatorname{Re}\langle y-p_C(y), p_C(x)-p_C(y)\rangle - \operatorname{Re}\langle p_C(y), p_C(x)-p_C(y)\rangle$$
$$= -\operatorname{Re}\langle x-p_C(x), p_C(y)-p_C(x)\rangle - \operatorname{Re}\langle y-p_C(y), p_C(x)-p_C(y)\rangle +$$
$$+\|p_C(x)-p_C(y)\|^2 \ge \|p_C(x)-p_C(y)\|^2$$

i.e. :

$$||p_{C}(x) - p_{C}(y)||^{2} \le \operatorname{Re}\langle x - y, p_{C}(x) - p_{C}(y)\rangle \le |\operatorname{Re}\langle x - y, p_{C}(x) - p_{C}(y)\rangle|$$

$$\le ||x - y|| ||p_{C}(x) - p_{C}(y)||$$

$$\Rightarrow ||p_{C}(x) - p_{C}(y)|| \le ||x - y||.$$

Proposition 1.3.4. Soit E un espace préhilbertien et soit $F \subset E$ un sev complet. Alors : $\forall x \in E$, il existe $a \in F$ unique t.q. ||x-a|| = d(x,F). L'application $p_F : E \to F$, $x \mapsto a$ ainsi définie est caractérisée par :

$$p_F(x) \in F$$
 et $x - p_F(x) \in F^{\perp}$

Démonstration. On remarque que F est convexe et fermé, d'où l'existence et l'unicité de $p_F(x)$. On conclut en remarquant que :

$$\operatorname{Re}\langle x - p_F(x), y - p_F(x) \rangle \le 0, \quad \forall y \in F$$

et $y \mapsto y - p_F(x)$ est une bijection $F \to F$ donc

$$\operatorname{Re}\langle x - p_F(x), y \rangle \le 0, \quad \forall y \in F.$$

F est un espace vectoriel donc $y \in F \iff -y \in F$ et alors :

$$-\operatorname{Re}\langle x - p_F(x), y \rangle \le 0, \quad \forall y \in F$$

i.e. :

$$\operatorname{Re}\langle x - p_F(x), y \rangle = 0, \quad \forall y \in F.$$

De même, F est un ev sur $\mathbb C$ donc $y \in F \iff iy \in F$. On en déduit :

$$\operatorname{Re}\langle x - p_F(x), iy \rangle = \operatorname{Im}\langle x - p_F(x), iy \rangle = 0, \quad \forall y \in F$$

et finalement;

$$\langle x - p_F(x), y \rangle = 0, \quad \forall y \in F$$

i.e. $x - p_F(x) \in F^{\perp}$.

Supplémentaire orthogonal et somme directe

Définition 1.3.1. On dit qu'un ev E est la somme directe algébrique de deux ev F et G si E = F + G avec $F \cap G = \{0\}$.

Si E est un espace préhilbertien on dit que E est la somme directe orthogonale de F et G si $E=F\oplus G$ avec $G=F^{\perp}$. Alors G est appelé le supplémentaire orthogonal de F.

Théorème 1.3.5. Soit E un espace préhilbertien et soit $F \subset E$ un sev complet.

- 1. La projection orthogonale $p_F: E \to F$ est une application linéaire continue. Si $F \neq \{0\}$, alors $||p_F|| = 1$.
- 2. $E = F \oplus F^{\perp}$.
- 3. $F^{\perp} = \operatorname{Ker}(p_F)$ et $F^{\perp \perp} = F$.

Démonstration. 1. D'après le Théorème de projection hilbertienne, la projection p_F est bien définie. Soit $x,y\in E$ et soit $\lambda,\mu\in\mathbb{K}$.

$$p_F(x) \in F$$
 et $p_F(y) \in F \Rightarrow \lambda p_F(x) + \mu p_F(y) \in F$

 et

$$x - p_F(x) \in F^{\perp}$$
 et $y - p_F(y) \in F^{\perp}$

$$\Rightarrow \lambda x + \mu y - (\lambda p_F(x) + \mu p_F(y)) = \lambda (x - p_F(x)) + \mu (y - p_F(y)) \in F^{\perp}.$$

De la Proposition 1.3.4, on déduit que $p_F(\lambda x + \mu y) = \lambda p_F(x) + \mu p_F(y)$, i.e. p_F est linéaire.

 p_F étant linéaire et contractante, on a :

$$\forall x \in E, \quad ||p_F(x)|| = ||p_F(x) - p_F(0)|| \le ||x|| \Rightarrow ||p_F|| \le 1.$$

De plus : $\forall x \in E, x \in F \Rightarrow p_F(x) = x \text{ et } ||p_F(x)|| = ||x||$. Donc $||p_F|| = 1$.

2. Soit $x \in E$. On a $x = x - p_F(x) + p_F(x)$ avec $x - p_F(x) \in F^{\perp}$ et $p_F(x) \in F$ donc $E = F + F^{\perp}$. De plus :

$$\forall x \in F^{\perp} \cap F$$
, $||x||^2 = \langle x, x \rangle = 0 \iff x = 0$

donc $F \cap F^{\perp} = \{0\}$. Finalement, $E = F \oplus F^{\perp}$.

3. Soit $x \in \text{Ker}(p_F)$. Alors $x = x - p_F(x) \in F^{\perp}$. Donc $\text{Ker}(p_F) \subset F^{\perp}$. Inversement soit $x \in F^{\perp}$. Par unicité de la décomposition $x = x - p_F(x) + p_F(x) \in F^{\perp} \oplus F$ on déduit que $p_F(x) = 0$, i.e. $x \in \text{Ker}(p_F)$. Finalement : $\text{Ker}(p_F) = F^{\perp}$.

On a : $F \subset (F^{\perp})^{\perp}$. Inversement, soit $x \in F^{\perp \perp}$. Alors :

$$x - p_F(x) \in F^{\perp} \Rightarrow \langle x, x - p_F(x) \rangle = 0$$

donc

$$||x||^2 = \langle x, p_F(x) \rangle = \langle x - p_F(x), p_F(x) \rangle + \langle p_F(x), p_F(x) \rangle = \langle p_F(x), p_F(x) \rangle$$
$$= ||p_F(x)||^2.$$

De plus (Théorème d Pythagore) :

$$p_F(x) \perp x - p_F(x) \Rightarrow ||x||^2 = ||x - p_F(x)||^2 + ||p_F(x)||^2.$$

On en déduit
$$\|x-p_F(x)\|^2=0,$$
 i.e. $x=p_F(x)\in F.$ Donc $F^{\perp\perp}\subset F.$

Remarque 1. Sous les mêmes hypothèses, $I-p_F$ est la projection orthognle sur F^{\perp} et on peut écrire $I-p_F=p_{F^{\perp}}$.

Corollaire 1.3.6. Si F est un sev fermé d'un espace de Hilbert H alors : $H=F\oplus F^\perp$ et $F^{\perp\perp}=F$.

 $D\acute{e}monstration.$ On se ramène au Théorème 1.3.5 en remarquant que F fermé dans H complet est complet. $\hfill\Box$

Dans le cas général où F est un sev non nécessairement fermé d'un espace de Hilbert, on a le résultat suivant.

Corollaire 1.3.7. Soit F un sev d'un espace de Hilbert H. On a :

- 1. $F^{\perp \perp} = \overline{F}$.
- 2. $\overline{F} = H \iff F^{\perp} = \{0\}.$

Démonstration. 1. On remarque que $F^{\perp} = \bigcap_{y \in F} \operatorname{Ker}(\phi_y)$ où $\phi_y : x \mapsto \langle x, y \rangle$ est linéaire continue de norme $\|\phi_y\| = \|y\|$, $\forall y \in F$. Donc F^{\perp} est fermé comme intersection de fermés. Ceci reste vrai pour $F^{\perp \perp}$ qui est également fermé. E particulier :

$$F \subset F^{\perp \perp} \Rightarrow \overline{F} \subset \overline{F^{\perp \perp}} = F^{\perp \perp}.$$

De plus, le Corollaire 1.3.6 entraîne :

$$F\subset \overline{F}\Rightarrow \overline{F}^{\perp}\subset F^{\perp}\Rightarrow F^{\perp\perp}\subset \overline{F}^{\perp\perp}=\overline{F}.$$

Finalement : $F^{\perp \perp} = \overline{F}$.

2. De ce qui précède on déduit :

$$\overline{F} = H \iff (F^{\perp})^{\perp} = H \iff \overline{F^{\perp}} = H^{\perp} \iff F^{\perp} = \{0\}$$

car $H^{\perp}=\{0\}$ par définition du produit scalaire et $\overline{F^{\perp}}=F^{\perp}$ puisque F^{\perp} est fermé.

Définition 1.3.2. Soit H un espace de Hilbert. Un endomorphisme $P: H \to H$ est un opérateur autoadjoint (ou hermitien si $K = \mathbb{C}$) si $\langle P(x), y \rangle = \langle x, P(y) \rangle, \forall x, y \in \mathbb{C}$

Proposition 1.3.8. Soit F un sev fermé d'un espace de Hilbert H.

- 1. $p_F \circ p_F = p_F$
- 2. p_F est auto-adjoint : $\forall x, y \in H$, $\langle p_F(x), y \rangle = \langle x, p_F(y) \rangle$.

1. C'est une conséquence directe de l'unicité de la projection orthogonale sur F.

2. Soit $x, y \in H$.

$$x - p_F(x) \in F^{\perp}$$
 et $p_F(y) \in F \Rightarrow \langle x, p_F(y) \rangle = \langle p_F(x), p_F(y) \rangle$.

On en déduit :

$$\langle p_F(x), y \rangle = \overline{\langle y, p_F(x) \rangle} = \overline{\langle p_F(y), p_F(x) \rangle} = \langle p_F(x), p_F(y) \rangle$$

Finalement : $\langle x, p_F(y) \rangle = \langle p_F(x), y \rangle = \langle p_F(x), p_F(y) \rangle$.

Le Théorème de représentation de Riesz 1.3.1

Corollaire 1.3.9. Soit E un espace de Hilbert et soit $F \subset E$ un sev fermé. Alors: $\forall x \in E$, il existe $a \in F$ unique t.q. ||x - a|| = d(x, F). L'application $p_F: E \to F, x \mapsto a \text{ ainsi définie est caractérisée par :}$

$$p_F(x) \in F$$
 et $x - p_F(x) \in F^{\perp}$

Remarque 2. Le Corollaire 1.3.9 montre que p_F est la projection orthogonale sur F. On en déduit que p_F est une application linéaire de E sur F t.q. $||p_F|| = 1$ et $F^{\perp} = \text{Ker} p_F$.

Proposition 1.3.10 (Théorème de représentation de Riesz). Soit E un espace de Hilbert. L'application $\Phi: E \to E', x \mapsto \{\phi_x: y \mapsto \langle y, x \rangle\}$ est une isométrie antilinéaire et une bijection de E sur E'.

Démonstration. On a déjà vu que $x \mapsto \{\phi_x : y \mapsto \langle y, x \rangle\}$ est une isométrie de E dans E'. Soit $f \in E'$, $f \neq 0$, et soit $F = \operatorname{Ker} f$. Alors F est un sev fermé de E. Soit $x_0 \in E \setminus F$. Alors $u := x_0 - p_F(x_0) \in F^{\perp}$ et $\mathbb{R}u \subset F^{\perp}$. Soit $\phi_u : y \mapsto \langle u, y \rangle$. On a $F = F^{\perp \perp} \subset (\mathbb{R}u)^{\perp} = \text{Ker}\phi_u$. Comme $\text{Ker}\phi_u$ et F sont deux hyperplans de E, on en déduit que $\operatorname{Ker}\phi_u = F$, i.e. $\exists c \in \mathbb{K}$ t.q. $f = c\phi_u = \phi_{\overline{c}u} = \Phi(\overline{c}u)$. On a $f(u) = c\phi_u(u) = c||u||^2 \Rightarrow c = \frac{f(u)}{||u||^2}$. Alors $f = \phi_{\overline{c}u}$ avec $c = \frac{f(u)}{||u||^2}$ et alors

a
$$f(u) = c\phi_u(u) = c||u||^2 \Rightarrow c = \frac{f(u)}{||u||^2}$$
. Alors $f = \phi_{\overline{c}u}$ avec $c = \frac{f(u)}{||u||^2}$ et alors

$$\forall y \in E, \quad f(y) = \langle y, \overline{c}u \rangle.$$

Corollaire 1.3.11. Soit H un espace de Hilbert. L'application $\Phi: H \to H'$, $y \mapsto \phi_y$ t.q. $\phi_y(x) = \langle x, y \rangle$, $\forall x \in H$, est une isométrie bijective antilinéaire de H sur H'. En particulier si $\mathbb{K} = \mathbb{R}$, alors Φ est un isomorphisme isométrique de H sur H'.

Corollaire 1.3.12. Tout espace de Hilbert est réflexif.

 $D\acute{e}monstration$. Soit H un espace de Hilbert et soit $\Phi: H \to H'$ l'isométrie antilinéaire bijective entre H et H'. Comme Φ est une isométrie, on définit un produit scalaire sur H' en posant

$$\forall f, g \in H', \quad \langle f, g \rangle_{H'} = \langle \Phi^{-1}(g), \Phi^{-1}(f) \rangle_H = \overline{\langle \Phi^{-1}(f), \Phi^{-1}(g) \rangle_H}.$$

Alors, $(f_n)_{n\geq 0}$ est de Cauchy dans H' ssi $(\Phi^{-1}(f_n))_{n\geq 0}$ est de Cauchy dans H, i.e. convergente dans H. Par isométrie, $(f_n)_{n\geq 0}$ est convergente dans H'. On en déduit que H' est un espace de Hilbert, donc il existe une isométrie antilinéaire bijective $\Psi: H' \to H''$. Alors, $\Psi \circ \Phi$ est un isomorphisme de H sur H'', i.e. H est réflexif.

Adjoint d'un opérateur

Proposition 1.3.13. Soit H, K deux espaces de Hilbert et soit $A \in \mathcal{L}(H,K)$ une application linéaire continue. Il existe une unique application linéaire continue $A^* \in \mathcal{L}(K,H)$ appelée adjointe de A t.q.:

$$\forall x \in H, \quad \forall y \in K, \quad \langle Ax, y \rangle_K = \langle x, A^*y \rangle_H.$$

De plus $||A^*|| = ||A||$ et $A^{**} = A$.

Démonstration. Soit $y \in K$. L'application $\phi_y \circ A : H \to \mathbb{K}$, $x \mapsto \langle Ax, y \rangle$ est linéaire continue comme composée d'applications linéaires continues, et on a $\phi_y \circ A \in H'$ avec

$$\|\phi_y \circ A\| \le \|\phi_y\| \|A\| = \|y\|_K \|A\|.$$

On en déduit qu'il existe $A^*y \in H$ unique t.q. $\phi_{A^*y} = \phi_y \circ A$. On remarque que, par antilinéarité de $y \mapsto \phi_y : \forall y \in K, \forall \lambda \in \mathbb{K}$,

$$\phi_{A^*(\lambda y)} = \phi_{\lambda y} \circ A = \overline{\lambda} \phi_y \circ A = \overline{\lambda} \phi_{A^* y} = \phi_{\lambda A^* y}$$

i.e., par définition de $A^*:A^*(\lambda y)=\lambda A^*y.$ Donc A^* est linéaire. De plus : $\forall y\in K,$

$$\|\phi_{A^*y}\| = \|A^*y\| = \|\phi_y \circ A\| \le \|y\|_K \|A\|$$

donc A^* est continue de norme $||A^*|| \le ||A||$. On remarque que : $\forall x \in H$, $\forall y \in K$,

$$\phi_{A^*y}(x) = \overline{\phi_{Ax}(y)} \Rightarrow |\phi_{Ax}(y)| \le ||\phi_{A^*y}|| ||x|| \le ||A^*|| ||y|| ||x|| \Rightarrow ||Ax|| \le ||A^*|| ||x||$$

i.e.
$$||A|| \le ||A^*||$$
. Finalement : $||A|| = ||A^*||$.

1.3.2 Systèmes orthonormés et bases hilbertiennes

Définition 1.3.3. Soit E un espace préhilbertien sur \mathbb{K} . Un système $(x_i)_{i\in I}$ de vecteurs de E et un système orthogonal si $\langle x_i, x_i \rangle = 0$, $\forall i \neq j$.

Définition 1.3.4. Soit E un espace préhilbertien sur \mathbb{K} . Un système orthogonal $(x_i)_{i\in I}$ est orthonormé si $||x_i|| = 1$, $\forall i \in I$.

Exemple 3. Dans \mathbb{R}^n ou \mathbb{C}^n muni du produit scalaire usuel, le système (e_1, \dots, e_n) donné par $(e_k)_i = \delta_{ik}, i, k \in [[1, n]]$, est un système orthonormé.

Exemple 4. Dans l'espace de Hilbert $\ell^2(\mathbb{N}, \mathbb{K})$ muni du produit scalaire $\langle x, y \rangle = \sum_{n \geq 0} x_k \overline{y}_k$, $\forall x = (x_n)_{n \geq 0}$, $y = (y_n)_{n \geq 0} \in \ell^2(\mathbb{N}, \mathbb{K})$, le système $(e_n)_{n \geq 0}$ donné par $(e_n)_k = \delta_{kn}$, $\forall k, n \geq 0$ est orthonormé.

Exemple 5. Dans l'espace de Hilbert $L^2([-\pi, \pi], \mathbb{C})$ muni du produit scalaire $\langle x, y \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) \overline{y}(t) dt$, le système $(e_n)_{n \in \mathbb{Z}}$ où e_n est la fonction $e_n : [-\pi, \pi] \to \mathbb{C}$, $t \mapsto e^{int}$.

Proposition 1.3.14. Soit E un espace préhilbertien et soit $(e_i)_{i \in I}$ un système orthonormé. On suppose I fini. On pose $F = \text{Vect}\{e_i, i \in I\}$. Soit $x, y \in E$. On a

- 1. $p_F(x) = \sum_{i \in I} \langle x, e_i \rangle e_i$
- 2. $||p_F(x)||^2 = \sum_{i \in I} \langle x, e_i \rangle^2$
- 3. $\langle p_F(x), y \rangle = \langle x, p_F(y) \rangle = \langle p_F(x), p_F(y) \rangle = \sum_{i \in I} \langle x, e_i \rangle \overline{\langle y, e_i \rangle}$

Démonstration. 1. Soit $x \in E$. On pose $P(x) = \sum_{i \in I} \langle x, e_i \rangle e_i$. On a :

$$\forall i \in I, \quad \langle x - P(x), e_i \rangle = \langle x, e_i \rangle - \sum_{j \in I} \langle x, e_j \rangle \langle e_i, e_j \rangle = \langle x, e_i \rangle - \langle x, e_i \rangle = 0$$

donc $x-P(x)\in F^{\perp}.$ Comme de plus $P(x)\in F,$ on en déduit que $P(x)=p_F(x).$

2. Soit $x \in F$. D'après ce qui précède :

$$||p_F(x)||^2 = \langle p_F(x), p_F(x) \rangle = \sum_{i,j \in I} \langle x, e_i \rangle \overline{\langle x, e_j \rangle} \langle e_i, e_j \rangle$$
$$= \sum_{i \in I} |\langle x, e_i \rangle|^2.$$

3. Soit $x, y \in E$. On a

$$\langle p_F(x), y \rangle = \sum_{i \in I} \langle x, e_i \rangle \langle e_i, y \rangle = \sum_{i \in I} \langle x, e_i \rangle \overline{\langle y, e_i \rangle}.$$

Proposition 1.3.15 (Inégalité de Bessel). Soit E un espace préhilbertien et soit $(e_i)_{i\in I}$ un système orthonrmé de E.

1. Soit $x \in E$ et soit $J \subset I$ une partie finie de I. On a

$$||x||^2 = \sum_{i \in J} |\langle x, e_i \rangle|^2 + ||x - \sum_{i \in J} \langle x, e_i \rangle e_i||^2$$

2. Soit $x \in E$. La famille $(|\langle x, e_i \rangle|^2)_{i \in I}$ est sommable dans \mathbb{R} de somme majorée par $||x||^2$:

$$\sum_{i \in I} |\langle x, e_i \rangle|^2 \le ||x||^2.$$

Démonstration. 1. Soit $x \in E$ et soit $J \subset I$ une partie finie de I. On pose $F = \text{Vect}\{x_i, i \in J\}$. Alors

$$||x||^2 = ||p_F(x)||^2 + ||x - p_F(x)||^2 = \sum_{i \in J} |\langle x, e_i \rangle|^2 + ||x - \sum_{i \in J} \langle x, e_i \rangle e_i||^2.$$

2. Soit Λ l'ensemble des parties finies de I. De ce qui précède on déduit que :

$$\sum_{i \in I} |\langle x, e_i \rangle|^2 := \sup_{J \in \Lambda} \sum_{i \in J} |\langle x, e_i \rangle|^2 \le ||x||^2.$$

Corollaire 1.3.16. Soit H un espace de Hilbert et soit $(e_i)_{i\in I}$ un système orthonormé de H. Pour tout $x\in H$, la famille $(\langle x,e_i\rangle e_i)_{i\in I}$ est sommable de somme vérifiant l'estimation :

$$\|\sum_{i\in I} \langle x, e_i \rangle e_i\| \le \|x\|.$$

 $D\acute{e}monstration.$ Soit $x\in H.$ D'après la Proposition 1.3.15 et l'inégalité de Bessel :

$$\sum_{i \in I} |\langle x, e_i \rangle|^2 \le ||x||^2 < +\infty$$

i.e. la famille $(|\langle x,e_i\rangle|^2)_{i\in I}$ est sommable. Soit $\varepsilon>0$. On en déduit qu'il existe $J_\varepsilon\in\Lambda$ t.q. :

$$\forall J \in \Lambda, \quad J \subset J_{\varepsilon}^c \Rightarrow \sum_{i \in I} |\langle x, e_i \rangle|^2 \le \varepsilon.$$

i.e., le système $(e_i)_{i \in I}$ étant orthonormé :

$$\forall J \in \Lambda, \quad J \subset J_{\varepsilon}^{c} \Rightarrow \|\sum_{i \in J} \langle x, e_{i} \rangle e_{i}\|^{2} = \sum_{i \in J} |\langle x, e_{i} \rangle|^{2} \leq \varepsilon.$$

La famille $(\langle x, e_i \rangle e_i)_{i \in I}$ vérifie le critère de Cauchy dans H qui est complet donc est sommable, de somme $\sum_{i \in I} \langle x, e_i \rangle e_i$ vérifiant :

$$\forall J \in \Lambda, \quad \|\sum_{i \in J} \langle x, e_i \rangle e_i\|^2 = \sum_{i \in J} |\langle x, e_i \rangle|^2 \le \|x\|^2 < +\infty.$$

On en déduit :

$$\sup_{J \in \Lambda} \|\sum_{i \in J} \langle x, e_i \rangle e_i\|^2 = \|\sum_{i \in I} \langle x, e_i \rangle e_i\|^2 = \sum_{i \in I} |\langle x, e_i \rangle|^2 \le \|x\|^2 < +\infty.$$