M2 2022-2023

Préparation à l'agrégation externe

Feuille d'exercice de théorie des groupes

Le but de cette feuille est de s'entraîner à l'utilisation des théorèmes de Sylow et des actions de groupes, en étudiant deux manières de montrer que tout groupe simple à 60 éléments est isomorphe au groupe alterné \mathfrak{A}_5 .

On note G un groupe simple à 60 éléments.

Exercice 1: Preuve par les 2-Sylow

- 1. Pour $p\in\{2,3,5\}$, notons n_p le nombre de p-Sylow du groupe G. En utilisant les théorèmes de Sylow, montrer que $n_2\in\{3,5,15\},$ $n_3\in\{4,10\}$ et $n_5=6$.
- 2. Montrer que l'action de G par conjugaison sur ses p-Sylow donne un morphisme de groupes ι_p de G dans \mathfrak{S}_{n_p} .
- 3. Montrer que ce morphisme est injectif et en déduire que $n_p \geqslant 5$.
- 4. Montrer que le morphisme de groupes obtenu en composant la signature avec ι_p est trivial, et en déduire que si $n_p = 5$ alors ι_p donne un isomorphisme du groupe G avec \mathfrak{A}_5 .
- 5. En déduire que l'on peut supposer $n_2 = 15$, $n_3 = 10$ et $n_5 = 6$, ce que l'on fait dans la suite de cet exercice.
- 6. Montrer que les 2-Sylow du groupe G sont soit tous cycliques d'ordre 4, soit tous isomorphes à $(\mathbb{Z}/2\mathbb{Z})^2$.
- 7. Si les 2-Sylow étaient cycliques, montrer que le groupe G contiendrait 30 éléments d'ordre 4, 20 éléments d'ordre 3 et 24 éléments d'ordre 5. Est-ce possible?
- 8. Montrer qu'il existe des 2-Sylow S et T du groupe G dont l'intersection est un sous-groupe d'ordre 2. Notons g l'élément non neutre de ce sous-groupe.
- 9. Soit Z(g) l'ensemble des éléments du groupe G qui commutent avec g. Montrer que Z(g) est un sous-groupe de G qui contient S et T.
- 10. En déduire que $|Z(g)| \in \{12, 20, 60\}$.
- 11. Montrer que l'action du groupe G sur l'ensemble G/Z(g) par translation à gauche donne un morphisme de groupe injectif ρ de G dans l'ensemble des permutations de G/Z(g).
- 12. En déduire que $|G/Z(g)| \ge 5$, puis que |Z(g)| = 12.
- 13. En déduire que le morphisme ρ donne un morphisme du groupe G dans $\mathfrak{S}_5.$
- 14. En considérant le morphisme composé de la signature et de ρ , montrer qu'on obtient ainsi un isomorphisme de G sur \mathfrak{A}_5 .
- 15. Quelle est la décomposition en cycles des éléments d'ordre 2 de \mathfrak{A}_5 ? En déduire que le groupe \mathfrak{A}_5 a 5 sous-groupes d'ordre 4, isomorphes à $(\mathbb{Z}/2\mathbb{Z})^2$.

Exercice 2: Preuve par les 5-Sylow

- 1. Montrer que le groupe G a 6 sous-groupes d'ordre 5, et que l'action de G sur ces sous-groupes par conjugaison donne un morphisme de groupes injectif θ de G dans \mathfrak{S}_6 .
- 2. En composant avec la signature, montrer que l'image de ce morphisme est un sous-groupe d'indice 6 du groupe \mathfrak{A}_6 .

- 3. Soit H un sous-groupe d'indice 6 du groupe \mathfrak{A}_6 . Montrer que l'action par translation du groupe H sur l'ensemble \mathfrak{A}_6/H donne un morphisme de groupe de H dans \mathfrak{S}_6 .
- 4. Montrer que l'image de ce morphisme n'est pas réduite à l'identité.
- 5. Montrer qu'il y a un élément de \mathfrak{A}_6/H qui est fixé par cette action de groupe, et en déduire un morphisme σ du groupe H dans \mathfrak{S}_5 .
- 6. Montrer que $\sigma \circ \theta$ donne un morphisme de groupes injectif de G dans $\mathfrak{A}_5.$ Conclure.