M2 2022-2023

Préparation à l'agrégation externe

Feuille d'exercices sur les corps finis

Soit k un corps fini, de caractéristique p et de cardinal $q = p^n$. Notons $\varphi \colon x \mapsto x^p$ l'automorphisme de Frobenius du corps k. Alors l'application φ est une permutation des éléments de k. Le but de cette feuille est de calculer la signature $\varepsilon(\varphi)$ de cette permutation, en fonction des nombres p et n.

Quelques cas particuliers

Exercice 1

- 1. Déterminer $\varepsilon(\varphi)$ dans le cas n=1.
- 2. Déterminer $\varepsilon(\varphi)$ dans le cas q=4.
- 3. Si n=2, montrer que la permutation φ est produit de $\frac{p^2-p}{2}$ transpositions, et en déduire $\varepsilon(\varphi)$.
- 4. Si n est impair, montrer que $\varepsilon(\varphi) = 1$. (Indication : considérer l'ordre de φ .)

Exercice 2

Soit ℓ un nombre premier impair, et soit $a \in (\mathbb{Z}/\ell\mathbb{Z})^{\times}$.

- 1. Montrer que si a est un générateur du groupe $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$, alors la permutation de $\mathbb{Z}/\ell\mathbb{Z}$ donnée par la multiplication par a est un $(\ell-1)$ -cycle. En déduire la signature de cette permutation.
- 2. Dans le cas général, montrer que la signature de la multiplication par a est le symbole de Legendre $\left(\frac{a}{\ell}\right)$.
- 3. En déduire la signature $\varepsilon(\varphi)$ dans le cas où q-1 est un nombre premier de Mersenne.

L'abélianisé du groupe linéaire

Dans cette partie, K est un corps, non nécessairement fini. Si G est un groupe, on note D(G) le sous-groupe engendré par les commutateurs, appelé sous-groupe dérivé.

Exercice 3

- 1. Montrer que $D(\operatorname{GL}_n(K)) \subseteq \operatorname{SL}_n(K)$, en mettant en valeur le rôle de la commutativité du groupe K^{\times} .
- 2. Montrer que si n < 2, alors $D(GL_n(K)) = SL_n(K)$.
- 3. Montrer que le groupe $\mathrm{SL}_n(K)$ est engendré par les transvections. (Indication : on peut penser au pivot de Gauß.)
- 4. Montrer que les transvections de K^n sont semblables entre elles. (Indication : utiliser le théorème de la base incomplète pour montrer qu'elles ont la même matrice (réduction de Jordan) dans des bases bien choisies.)
- 5. En déduire que les transvections sont toutes dans la même classe du quotient $GL_n(K)/D(GL_n(K))$.
- 6. En déduire que si, dans $\mathrm{GL}_n(K)$, le produit de deux transvections est une transvection, alors $D(\mathrm{GL}_n(K)) = \mathrm{SL}_n(K)$.
- 7. Soit λ une forme linéaire non nulle sur K^n . Supposons qu'il existe $u, v, w \in \ker \lambda \setminus \{0\}$ tels que u + v = w. Montrer que $D(\operatorname{GL}_n(K)) = \operatorname{SL}_n(K)$.

- 8. En déduire que si $|K|\geqslant 3$ ou $n\geqslant 3$, alors $D(\mathrm{GL}_n(K))=\mathrm{SL}_n(K).$
- 9. Montrer que si $|K| \neq 2$ ou $n \neq 2$, alors le déterminant induit un isomorphisme de groupes de l'abélianisé $\mathrm{GL}_n(K)/D(\mathrm{GL}_n(K))$ sur K^{\times} .

Exercice 4 : Le théorème de Frobenius-Zolotarev

On suppose ici que K est un corps fini tel que $D(GL_n(K)) = SL_n(K)$.

- 1. Tout automorphisme de l'espace vectoriel K^n étant une permutation de K^n , la signature donne un morphisme de groupes de $\mathrm{GL}_n(K)$ dans $\{\pm 1\}$. Montrer que ce morphisme est se factorise par le déterminant det: $\mathrm{GL}_n(K) \to K^\times$.
- 2. Montrer que le morphisme donné par la signature est surjectif si K n'est pas de caractéristique 2.
- 3. Combien y a-t-il de sous-groupes d'indice 2 dans un groupe cyclique?
- 4. En déduire que si $A \in GL_n(K)$, alors

$$\varepsilon(A) = \begin{cases} 1 & \text{si } \det(A) \text{ est un carr\'e dans } K \\ -1 & \text{sinon.} \end{cases}$$

Que se passe-t-il si K est de caractéristique 2?

La signature du morphisme de Frobenius

Exercice 5

- 1. Montrer que X^n-1 est le polynôme minimal de l'application \mathbb{F}_p -linéaire φ . (On pourra considérer un polynôme annulateur Q de degré strictement inférieur, et majorer le nombre d'éléments de k où $Q(\varphi)$ s'annule.)
- 2. En déduire le polynôme caractéristique et de déterminant de φ .
- 3. En utilisant le théorème de Frobenius-Zolotarev, calculer $\varepsilon(\varphi)$ lorsque $q \neq 4$. Comparer aux cas où la signature a déjà été calculée.
- 4. Montrer que $D(GL_2(\mathbb{F}_2)) \neq SL_2(\mathbb{F}_2)$.