UNIVERSITÉ DE RENNES

Agreg

35

INTERVERSION

Exercice 1

Soit f une fonction continue sur [0, 1].

1. Montrer que $\int_0^1 t^n f(t) dt \to 0$.

On souhaite estimer la vitesse de convergence de cette suite vers 0.

2. Montrer que :

$$n \int_{0}^{1} t^{n} f(t) dt = \int_{0}^{\infty} \left(1 - \frac{u}{n} \right)^{n} f\left(1 - \frac{u}{n} \right) \mathbb{1}_{[0,n]}(u) du.$$

3. En déduire la limite de la suite $n \int_0^1 t^n f(t) dt$.

On rappelle que si f est intégrable alors sa transformée de Fourier est la fonction :

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-i\xi x} dx.$$

Exercice 2 (Lemme de Riemann-Lebesgue)

On va montrer que si f est intégrable alors $\hat{f}(\xi) \xrightarrow[\xi \to \infty]{} 0$.

- 1. Rappeler pourquoi \hat{f} est continue.
- **2.** On commence en supposant f continue à support compact. Montrer que :

$$\hat{f}(\xi) = -\int_{\mathbb{D}} f\left(x + \frac{\pi}{\xi}\right) e^{-ix\xi} dx$$

3. En déduire que, pour $\xi \neq 0$:

$$|\hat{f}(\xi)| \le \frac{1}{2} \int_{\mathbb{R}} \left| f(x) - f\left(x + \frac{\pi}{\xi}\right) \right| dx.$$

- 4. En déduire le lemme de Riemann-Lebesgue pour les fonctions continues à support compact.
- 5. En déduire le cas général.

L'espace de Schwartz est l'espace des fonctions $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{C})$ à décroissante rapide, c'est à dire que, l'espace des fonctions \mathscr{C}^{∞} tel que :

$$\forall k \ge 0, \forall N \ge 0, \quad x^N f^{(k)}(x) \underset{x \to \infty}{\longrightarrow} 0.$$

On le note $\mathcal{S}(\mathbb{R})$, il est très utile quand on fait du Fourier.

Exercice 3 (Formule sommatoire de Poisson)

Le but de l'exercice est de montrer que si f est dans l'espace de Schwartz alors on a :

$$\forall x \in \mathbb{R}, \quad \sum_{n \in \mathbb{Z}} f(x + 2\pi n) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx}.$$

En particulier,

$$\sum_{n\in\mathbb{Z}} f(2\pi n) = \frac{1}{2\pi} \sum_{n\in\mathbb{Z}} \hat{f}(n).$$

- **1.** Montrer que la série de fonction $\sum_{n\in\mathbb{Z}} f(x+2\pi n)$ converge normalement sur tout compact de \mathbb{R} .
- **2.** Montrer que la somme $\sum_{n\in\mathbb{Z}} f(x+2\pi n)$ est une fonction 2π -périodique de classe \mathscr{C}^1 .
- 3. En déduire la formule de Poisson.

Exercice 4

Soit X une variable aléatoire réelle positive. Montrer que :

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X > t) dt$$

On rappelle que la fonction Γ est la fonction suivante :

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

pour $z \in \mathbb{C}$ tel que Re(z) > 0.

Exercice 5

On va montrer que, pour tout 0 < x < 1, on a :

$$\Gamma(x)\Gamma(1-x) = \int_0^\infty \frac{dv}{v^x(1+v)}$$

Il est important de noter qu'en fait ¹ :

$$\int_0^\infty \frac{dv}{v^x(1+v)} = \frac{\pi}{\sin(\pi x)}$$

Ce qui donne la formule des compléments.

- **1.** Écrire $\Gamma(x)\Gamma(1-x)$ comme une intégrale sur \mathbb{R}^{*2}_+ en t et s.
- **2.** Faire le changement de variable u = s + t et $v = \frac{t}{s}$.
- 3. Conclure.