
Analytical model for the coupling
constant of a directional coupler in
terms of slab waveguides

Yann G. Boucher



Analytical model for the coupling constant of a
directional coupler in terms of slab waveguides

Yann G. Boucher
CNRS, UMR 6082 FOTON, CS 80518, Lannion cedex F-22305, France

Abstract. We present an analytical model for a generic two-wave directional coupler, in the conceptual frame of
coupled single-mode planar (slab) waveguides. The modal relation of dispersion is expressed exactly under a
matrix form. In the simplest symmetric configuration, the lift of degeneracy between the propagation constants of
the even (slow) and odd (fast) supermodes is the exact image of the coupling constant. © 2014 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.7.071810]

Keywords: integrated optics; glass photonics; slab waveguides; coupled-mode theory.

Paper 131665SS received Nov. 1, 2013; revised manuscript received Dec. 14, 2013; accepted for publication Dec. 18, 2013; pub-
lished online Jan. 13, 2014.

1 Introduction
Directional coupler is a key element for many photonic sys-
tems, from integrated beam-splitters to Mach–Zehnder
interferometers,1–3 including the input/output ports of micro-
resonators. The total fraction of power that can be transmit-
ted, along with the relative phase of the outgoing waves, is
the crucial parameter for evaluating the system performance.
In a similar fashion, the quality factor and the spectral prop-
erties of a microresonator rely heavily on the coupler.4–8

Whatever the context, the underlying physical mechanism
is often the same: otherwise isolated waveguides are brought
in close vicinity along a finite interaction length, over which
guided modes can exchange energy due to a mutual overlap
of their evanescent parts.

Evaluating the scattering parameters of a given coupler is
a mandatory step before any successful designing. Since
these depend critically on optogeometrical parameters
(such as dimensions, indices, etc.), extensive numerical cal-
culation is often required. Nevertheless, it is always very
instructive to use a simple analytical model that gives the
general tendency with respect to any change of wavelength,
material, or geometry.

In this respect, coupled-mode theory (CMT) is an attrac-
tive as well as a powerful tool for describing the exchange
between two waveguides over a given interaction
length.1,2,9–11 In the canonical (“textbook”) case of two sin-
gle-mode parallel waveguides, the problem is completely
determined by two dimensionless parameters only: the inte-
grated coupling constant (with a strength proportional to the
mutual overlap) and the overall detuning between the
propagation constants of the two waveguides.

These quantities can either be evaluated approximately in
the frame of a perturbative approach, or calculated numeri-
cally, or even determined experimentally. By contrast, what
we attempt in the present work is to establish an analogical
model for a directional coupler between two single-mode
symmetrical waveguides, in the frame of a matrix formalism
that enables one to determine “exactly” (i.e., in a “non–
perturbative”way) the precise value of the coupling constant,
by extracting it from the modal relation of dispersion of the
whole structure.

The paper is organized as follows. In Sec. 2, we recall the
main formal results relative to CMT, and the expression of
the coupling constants as seen through the prism of a pertur-
bation approach. In Sec. 3, we expose the matrix formalism
that gives the relation of dispersion, and we show how it can
be used to extract the coupling constant of a two-waveguide
symmetrical system without any approximation. We
comment on the transverse profile of the even and odd
super-modes and investigate the evolution of the coupling
constants as a function of the gap between the two wave-
guides. Since our original motivation was to dispose of a
rapid model for describing the coupling between a tapered
fiber and a SiO2 spherical microresonator,8 all numerical
applications are relative to glass/air structures. The case of
“weighted coupling,” where the system exhibits a (slow)
longitudinal variation of the gap along the propagation
axis, is briefly commented upon in Sec. 4. Conclusions
and perspectives are given in Sec. 5.

2 CMT Formalism and Perturbative Approach
Notations may vary according to the authors, but the princi-
ples remain the same and are very well documented.1,2,9–11

Consider two parallel, lossless, single-mode waveguides
exchanging their fields over interaction length L along the
z-axis, as schematically depicted in Fig. 1. Let βp denotes
the propagation constant of waveguide n°p, and
β ¼ ðβ1 þ β2Þ∕2; time dependence is taken as expðþiωtÞ.
Wavelength and wave-vector in vacuum are λ0
and k0 ¼ ðω∕cÞ.

2.1 Coupled-Mode Theory

When the waveguides are isolated,

i
∂
∂z

�
F1

F2

�
¼
�
β1 0

0 β2

��
F1

F2

�
; (1)

so that each mode propagates with is own propagation con-
stant. In the presence of mutual coupling, the problem can
usually be reduced to:
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∂z

�
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�
¼
�
β1 χ
χ β2

��
F1

F2

�
; (2)

where the nondiagonal “perturbation” term is responsible for
coupling. The “textbook” problem1–3 is completely deter-
mined by two parameters: detuning Δ ¼ ðβ1 − β2Þ∕2 and
coupling constant χ, which can be considered as real and
positive without loss of generality. The slowly varying
field envelopes Ap, such as Fp ¼ Ap expð−iβzÞ, are easily
shown to obey:

i
∂
∂z

�
A1

A2

�
¼
�
Δ χ
χ −Δ

��
A1

A2

�
; (3)

so that A1 and A2 are both solutions to the following second-
order ordinary differential equation (ODE), where Γ ¼
½χ2 þ Δ2�1∕2:

∂2Ap

∂z2
þ Γ2Ap ¼ 0: (4)

Taking into account the initial conditions F1ð0Þ ¼ F10,
F2ð0Þ ¼ F20, it is straightforward to establish the relation-
ship:

 
F1L

F2L

!
¼e−iβL

 
cosðΓLÞ−iΔΓsinðΓLÞ −iχΓsinðΓLÞ

−iχΓsinðΓLÞ cosðΓLÞþiΔΓsinðΓLÞ

!

×

 
F10

F20

!
: (5)

For perfect phase-matching (Δ ¼ 0, so that Γ ¼ χ), its
expression is even simpler

�
F1L

F2L

�
¼ e−iβL

�
cosðχLÞ −i sinðχLÞ

−i sinðχLÞ cosðχLÞ
��

F10

F20

�
: (6)

It is interesting to note the formal similarity with a “Jones-
type” matrix, describing the effect of an anisotropic plate in
polarization optics. The exchange of energy over distance is
illustrated in Fig. 2 for different values of the reduced detun-
ing (Δ∕χ), in the special case where the only input field is
injected into waveguide No. 1 at z ¼ 0 (F10 ¼ 1, F20 ¼ 0).

Only for perfect phase matching, can one expect to couple
100% of energy from one guide to the other. Otherwise, the
maximum amount of coupled power is given by

η ¼ χ2

χ2 þ Δ2
: (7)

It should be noted that total conversion is rarely required.
If only a few percent need to be exchanged, phase matching
is definitely “not” an issue. This should be kept in mind
when dealing with high-Q microresonators, where too
strong a coupling could lead to a dramatic decrease of
the Q-factor: in such a case, phase matching is not a rel-
evant requirement.

Fig. 1 Coupling between waveguides Nos. 1 and 2 over an interac-
tion length L.

(a)

(b)

(c)

Fig. 2 Periodic exchange of power between waveguides as a func-
tion of distance z: jF 1ðzÞj2 (black line) and jF 2ðzÞj2 (red dotted line)
for F 10 ¼ 1 and F 20 ¼ 0. (a) Perfect phase matching (Δ∕χ ¼ 0);
(b) Phase mismatch Δ∕χ ¼ 0.5; (c) phase mismatch Δ∕χ ¼ 1.
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On the other hand, the phase-matched case exhibits
another interesting property: the eigenmodes of the super-
structure are either symmetric (even) or antisymmetric
(odd). They are, respectively, characterized by propagation
constants βe (the slow mode) and βo (the fast mode) such
as βe − βo ¼ 2χ. These play a role quite similar to the
slow and fast waves in an anisotropic plate. Note also that
the lift of degeneracy from one double value of β into a cou-
ple ðβe; βoÞ is the formal equivalent, in the spatial frequency
domain, of the Rabi splitting of Quantum Mechanics in the
spectral domain.12 This universal phenomenon, affecting any
kind of coupled resonators, has the same algebraic basis: it
stems from the diagonalization of a nondiagonal matrix.

2.2 Perturbative Approach

Following Yariv and Yeh,1 consider two parallel single-mode
cylindrical waveguides (Fig. 3).

For negligible coupling, let ðβa; βbÞ denote their respec-
tive propagation constants. In the perturbative approach, the
total field propagating along the z-axis can be written as:

E ¼ AðzÞEaðx; yÞe−iβaz þ BðzÞEbðx; yÞe−iβbz; (8)

where Eaðx; yÞ and Ebðx; yÞ denote the profile of the modes
supported by the isolated waveguides. The coupling is
responsible for the “variation of constants” AðzÞ and BðzÞ,
representing slowly varying amplitudes. Inserting Eq. (8)
into the propagation equations, neglecting the second deriv-
atives and projecting onto the relevant modes, we get even-
tually(
i ∂A∂z ¼ χaaAþ χabBeþiðβa−βbÞz

i ∂B∂z ¼ χbbBþ χbaAe−iðβa−βbÞz
; (9)

where the four parameters χuv can be expressed as overlap
integrals:(
χab ¼ ωε0

4

R
Ea� · Δn2aðx; yÞEbdxdy

χba ¼ ωε0
4

R
Eb� · Δn2bðx; yÞEadxdy

; (10)

(
χaa ¼ ωε0

4

R
Ea� · Δn2bðx; yÞEadxdy

χbb ¼ ωε0
4

R
Eb� · Δn2aðx; yÞEbdxdy

: (11)

The first two terms stand for mutual coupling, and the last
two terms stand for “diagonal” coupling.

In the symmetrical configuration (two identical wave-
guides), χab ¼ χba ¼ χ, and χaa ¼ χbb. The initial detuning
Δ ¼ ðβa − βbÞ∕2 ¼ 0 remains therefore unchanged: phase
matching is automatically observed. One can also note
that Eq. (9) does not exhibit the same form as Eq. (1),
since evolution operator retains a z-dependence. A change
of variables is necessary to recover an “invariant” evolution
operator. Let β ¼ ðβa þ βbÞ∕2 denotes the initial average
propagation constant, and β 0 ¼ β þ ðχaa þ χbbÞ∕2 denotes
its new (corrected) value; if ðA1; A2Þ are chosen such as
AðzÞexpð−iβazÞ¼A1ðzÞexpð−iβ 0zÞ and BðzÞ expð−iβbzÞ ¼
A2ðzÞ expð−iβ 0zÞ, these must follow Eq. (3) with Δ ¼ 0.

In the special case of slab structures, the existence of
known solutions for the mode supported by each isolated
waveguide leads to explicit expressions for the coupling con-
stants. For instance, in the symmetric case, Yariv and Yeh1

show that χ presents an exponential decrease with the dis-
tance d between the waveguides.

But slab waveguides prove very convenient for yet
another reason: the coupling constant can be recovered
exactly, without any restriction pertaining to the perturbative
approximation. This is the subject of Sec. 3.

3 Symmetrical Slab Waveguides: Non-Perturbative
Approach

3.1 Slab Waveguides and Matrix Formalism

Consider the isolated slab waveguide as illustrated in Fig. 4.
From an electromagnetic point of view, it is easy to sep-

arate the two eigenstates of polarization, using the electric
field E ¼ EðxÞey in the TE case, the magnetic field
H ¼ HðxÞey in the TM case. We look for propagative sol-
utions in the guiding region (the core), for evanescent solu-
tions in the surrounding cladding. Dropping a common
factor expðþiωt − iβzÞ, we write the transverse part of the
“wave function” in zone p as the superposition of two
parts, ψþ

p and ψ−
p , with ψþ

p ¼ Ap expð−iκzÞ and
ψ−
p ¼ Bp expðþiκzÞ if propagation, ψþ

p ¼ Ap expð−γzÞ
and ψ−

p ¼ Bp expðþγzÞ if evanescence, with β2 − γ2 ¼
k21 ¼ n21k

2
0, β

2 þ κ2 ¼ k22 ¼ n22k
2
0 > k21.

The continuity of Maxwell’s equations and the boundary
conditions (no exponential increase in a semi-infinite clad-
ding) enable one to express the relationship between the
fields in a matrix way:

(a) (b)

Fig. 3 Schematic depiction of two parallel single-mode cylindrical waveguides. (a) General case and
(b) symmetrical slab waveguides.
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�
0

ψ−
0

�
¼
�
m11 m12

m21 m22

��
ψþ
3

0

�
; (12)

where

½m� ¼
0
@cos κh− 1

2

�
ρ− 1

ρ

�
sin κh − 1

2

�
ρþ 1

ρ

�
sin κh

1
2

�
ρþ 1

ρ

�
sin κh cos κhþ 1

2

�
ρ− 1

ρ

�
sin κh

1
A;

(13)

with

ρTE ¼ μ1
μ2

κ

γ
¼ μ1

μ2

κh
γh

; ρTM ¼ ε1
ε2

κ

γ
¼ ε1

ε2

κh
γh

: (14)

The modal resonance condition reads:

m11 ¼ 0: (15)

From this equation, one can extract the discrete (quan-
tized) values of κh corresponding to each mode. If the
reduced parameter V ¼ k0h½n22 − n21�1∕2 is inferior to π,
the guide is intrinsically single mode (actually, it supports
one mode for each state of polarization). Once κ is
known, so is β, since β2 þ κ2 ¼ k22. Propagation constant
is customarily written as β ¼ neffðω∕cÞ, where neff is
the effective index of the given mode. We draw in Fig. 5
the TE mode profile at λ0 ¼ 1.5 μm for a single-
mode slab waveguide defined by n1 ¼ 1, n2 ¼ 1.5, h ¼
0.67 μm. All subsequent numerical applications are relative

to the same set of parameters. The evanescent part is clearly
visible outside the core region, explaining the overlap
mechanism with any added external layer.

3.2 Coupled Symmetrical Slab Waveguides

The same principle holds for the coupled structure repre-
sented in Fig. 3(b), except for the detail of the matrix calcu-
lation. In the symmetrical case, the relevant matrix is [M]
such as

½M� ¼ ½m�
�
expðþγdÞ 0

0 expð−γdÞ
�
½m�; (16)

and the modal condition reads

M11 ¼ 0; (17)

which is equivalent to

m11 ¼ �m21e
−γd: (18)

The solutions are depicted graphically in Fig. 6. For great
enough distances (γd ≫ 1), the waveguides remain
uncoupled: the solutions are that of an isolated waveguide.
For smaller gaps, the degeneracy is clearly lifted (although
not necessarily in a symmetric way). The former value of κh
is replaced by a couple ðκeh; κohÞ corresponding to even and
odd solutions, with κe < κo.

It is instructive to follow the profile of the super-modes,
for decreasing values of the gap d (Fig. 7). For the sake of

(a) (b)

Fig. 4 Isolated symmetric slab waveguide of index n2 and thickness h, surrounded by a medium of index
n1. (a) seen from above, with the transverse and longitudinal parts of the wave-vectors; (b) cross-section,
with the wave-functions at each interface.

(a) (b)

Fig. 5 Mode profile of the fundamental (and only) mode, for λ0 ¼ 1.5 μm, n1 ¼ 1, n2 ¼ 1.5, h ¼ 0.67 μm.
(a) amplitude ψðxÞ ¼ ψþðxÞ þ ψ−ðxÞ; (b) intensity, normalized such as ∫ jψðxÞj2dx ¼ 1.
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clarity, we draw the amplitude ψðxÞ as well as the intensity
jψðxÞj2, in order to clearly distinguish the even from the odd
behavior.

We would like to point out that in the limiting case of a
vanishingly small gap (d ¼ 0), where treating the neighbor-
ing waveguide as a mere “perturbation” would make no
sense, the modal condition retains all its meaning: the struc-
ture has become a single waveguide of thickness 2h, support-
ing two modes. The even and odd “super-modes” have
actually merged into the lower and higher modes of the
bimodal waveguide.

Since ðκe; κoÞ are unequivocally determined, it is straight-
forward to extract the corresponding propagation constants
ðβe; βoÞ along the z-axis, with βe > βo. As a consequence, we
get

χ ¼ βe − βo
2

; (19)

β 0 ¼ βe þ βo
2

: (20)

The coupling constant is drawn in Fig. 8(a) as a function
of d. By the way of comparison, we also represent the per-
turbative value as calculated following Yariv and Yeh;1 with
our notations:

χ ¼ 2κ2γ expð−γdÞ
βðhþ 2

γÞðκ2 þ γ2Þ : (21)

We also obtain the new value of the average propagation
constant, as corrected by the (otherwise unknown) “diago-
nal” term χaa (see Sec. 2.2). As can be seen from Fig. 8(b),
it differs significantly from the perturbative model, where a
monotonically decreasing behavior in expð–2γdÞ is
expected.

We would like to emphasize the following points:

• Normalized coupling constant χh appears bounded by
an upper limit, that is obtained for d ¼ 0.

• In that configuration, the system is formally reduced to
a unique waveguide of thickness 2hðV ≈ 2πÞ, therefore
supporting two modes instead of one:

• Conversely, any two-mode slab waveguides can be
thought of as a set of two highly coupled single-
mode waveguides.

• More generally, for a given state of polarization, any
multimode slab waveguide (of thicknessH) supporting
N modes is formally equivalent to a set of N coupled
single-mode waveguides (of individual thick-
ness H∕N).

• The evolution of χ with d still plainly follows an expo-
nential law χ0e

−γd, even for a vanishingly small gap
between waveguides, in a clearly “non-perturbative”
regime, that is, very far from “the assumption that
the waveguides are not too close, so that the overlap
integral of the mode functions is small1.”

• On the other hand, the “diagonal correction” trans-
forming β into β 0 exhibits a non-intuitive behavior
that cannot be recovered by a mere overlap integral
(which would monotonically decrease as e−2γd); how-
ever, this term remains small (about 1‰ in our case)
and becomes negligible as soon as d ≥ h.

One can also note that the upper value of χ is directly
connected to the difference between the two quantized values
of κ in a bimodal waveguide since β2e þ κ2e ¼ β2o þ κ2o ¼ k22,
we get:

χ ¼ βe − βo
2

¼ κ2o − κ2e
4β 0 : (22)

Bearing in mind that the order of magnitude of
(κoh − κeh) is π, we obtain a rough but very convenient esti-
mation of the coupling range accessible with a given
geometry.

The explicit exponential evolution of χ with d opens the
way to the study of structures that are no longer invariant
with respect to the z-axis as long as their longitudinal varia-
tion remains reasonably small.

4 Weighted Coupling: Some Exact Solutions

4.1 Longitudinally Varying Evolution Operator

In some instances, we have to deal with a longitudinal gra-
dient of coupling, for instance, if the gap d varies with
abscissa z. In the case of a reasonably slow gradient (the
slope of the variation remaining much smaller than the
other relevant parameters), we retrieve a typical case of
“weighted coupling” (see, e.g., Tamir et al.2): in first approxi-
mation, the integrated coupling strength χL is simply
replaced by an effective value ðχLÞeff ¼ ∫ χðzÞdz. It is pos-
sible to go a step further by deriving the propagation equa-
tion, which is shown to admit exact solutions in some
typical cases.

From a formal point of view, let us assume two identical
waveguides symmetrically coupled by a z-dependent cou-
pling “constant” χðzÞ. Slowly varying amplitudes ðA1; A2Þ
are subject to:

i
∂
∂z

�
A1

A2

�
≡
�

0 χðzÞ
χðzÞ 0

��
A1

A2

�
: (23)

After some elementary algebra, the ODE simultaneously
verified by both Ap reads:

Fig. 6 Graphical depiction of solutions for various values of d : m11,
m21e−γd , −m21e−γd as a function of κh; isolated guide (m11 ¼ 0, dark
circles), ðd∕hÞ ¼ 1 (triangles), ðd∕hÞ ¼ 1∕2 [squares] et ðd∕hÞ ¼ 1∕4
[open circles]. The closer the guides, the greater the lift of
degeneracy.
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∂2F
∂z2

−
1

χ

�
∂χ
∂z

�
∂F
∂z

þ χ2F ¼ 0: (24)

For simple variations (linear or quadratic) of χðzÞ, this
ODE admits exact solutions.

4.2 Linear Variation of the Gap

We assume a linear variation of distance d, written as

dðzÞ ¼ di þ d0

�
z
z0

�
; (25)

Fig. 7 Profile of the even (in red) and odd (in blue) supermodes, for (a) d ¼ 3h∕2, (b) h, (c) h∕2, (d) h∕4,
and (e) d ¼ 0. Left column (a1 to e1): amplitude ψðxÞ; right column (a2 to e2): normalized intensity
jψðxÞj2.
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over the whole interaction zone (z ∈ ½0; L�), as depicted
in Fig. 9.

As a result, coupling constant evolves as χðzÞ ¼ χie
−z∕a,

where χi is the initial value and a ¼ z0∕ðγd0Þ is the charac-
teristic length. Equation (24) becomes

∂2F
∂z2

þ 1

a
∂F
∂z

þ χ2i e
−2z∕aF ¼ 0: (26)

Its general solution reads

FðzÞ ¼ ka cos½χiae−z∕a� þ kb sin½χiae−z∕a�; (27)

where ka and kb are integration constants that depend on
boundary conditions.

The general solution can be written under a matrix form as�
A1ðzÞ
A2ðzÞ

�
¼
�

cos½ΦðzÞ� −i sin½ΦðzÞ�
−i sin½ΦðzÞ� cos½ΦðzÞ�

��
A10

A20

�
;

(28)

�
F1ðzÞ
F2ðzÞ

�
¼ e−iβz

�
cos½ΦðzÞ� −i sin½ΦðzÞ�

−i sin½ΦðzÞ� cos½ΦðzÞ�
��

F10

F20

�
;

(29)

ΦðzÞ ¼ χiað1 − e−z∕aÞ. (30)

Comparing with Eq. (6), one can see that this matrix has
exactly the same form as in the z-invariant case, except
for the replacement rule χz → ΦðzÞ. The maximum value
of the coupling strength is ðχLÞeff ¼ χia. The variation of
ΦðzÞ is depicted in Fig. 10.

4.3 Quadratic Variation of the Gap

We assume now a quadratic variation of distance d, written
as

dðzÞ ¼ di þ d0

�
z2

2z20

�
; (31)

over the whole interaction zone (z ∈ ½0; L�), as depicted
in Fig. 11.

As a result, coupling constant evolves in a Gaussian way
as χðzÞ ¼ χi exp½−ðz∕aÞ2�, where χi is the initial value and a
is the characteristic length, such as a2 ¼ 2z20∕ðγd0Þ.
Equation (24) becomes

∂2F
∂z2

þ 2z
a2

∂F
∂z

þ χ2i e
−2ðz∕aÞ2F ¼ 0: (32)

Its general solution reads

FðzÞ ¼ ka cos

�
χia

ffiffiffi
π

p
2

Erf

�
z
a

��

þ kb sin

�
χia

ffiffiffi
π

p
2

Erf

�
z
a

��
; (33)

where ka and kb are integration constants that depend on
boundary conditions.

(a) (b)

Fig. 8 (a) Evolution of normalized coupling constant χh with gap d , as compared with an exponential law
ðχ0hÞ expð−γdÞ; (b) Relative correction to the average propagation constant ðβ 0 − βÞ∕β as a function of d ,
as compared to the perturbative limit, monotonically decreasing as expð−2γdÞ.

Fig. 9 Symmetrical coupler with linear variation of gap d with respect
to z. Fig. 10 Evolution of ΦðzÞ in the linear case.
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Once again, the general solution can be written under a
matrix form as�
F1ðzÞ
F2ðzÞ

�
¼ e−iβz

�
cos½ΦðzÞ� −i sin½ΦðzÞ�

−i sin½ΦðzÞ� cos½ΦðzÞ�
��

F10

F20

�
;

(34)

ΦðzÞ ¼ χia
ffiffiffi
π

p
2

Erf

�
z
a

�
: (35)

The variation of ΦðzÞ is depicted in Fig. 12.
The conclusion is the same as before, with a maximum

value of coupling

ðχLÞeff ¼
χia

ffiffiffi
π

p
2

: (36)

In both cases, it can be interpreted in terms of an “effec-
tive coupling length” after which the waveguides become too
far from each other to interact. Note that the quadratic case
can be used as a first approximation for modeling the cou-
pling between a single-mode straight waveguide and a sin-
gle-mode ring-like resonator (ring, disk, or sphere), provided
the curvature is not too pronounced.

5 Conclusions
In the typical case of symmetrically coupled single-mode
slab waveguides, we have derived the coupling constant
in a rigorous way, without any need to resort to the usual

perturbative approximation. As a matter of fact, coupling
constant χ is an exact image of the lift of degeneracy between
the slow (even) and fast (odd) super-modes of the whole
structure. We have also found that χ is bounded by a finite
upper limit.

From a fundamental point of view, for a given eigen-state
of polarization (TE or TM), any multimode slab waveguide
(of thickness H) supporting N modes can be thought of as a
system of N mutually coupled single-mode waveguides (of
individual thicknessH∕N). It should be noted that, for purely
formal reasons of matrix symmetry, this holds also true for an
electronic wave-function inside a quantum well (QW), where
bound states obey a modal equation similar to Eq. (15)13: any
multiple-state QW can be seen as resulting from the coupling
of smaller single-state QW.

Although all the simulations have been presented for a
given wavelength, we would like to emphasize that modal
dispersion χðωÞ can be extracted in the same way. Since
we work in the spectral domain, taking material dispersion
into account is also straightforward. The influence of opto-
geometrical parameters (indices, thickness, gap) is immedi-
ately clear, since all expressions are derived analytically, with
the only exception of the modal condition, which requires the
resolution of a transcendental equation.

We have not only derived a very simple model bearing
great physical insight, we have also shown that codirectional
CMT remains soundly valid even in the non-perturbative
regime, much longer than usually believed. This is not as
surprising as it may seem, since CMT expresses the fact
that the eigen-functions of a linear system can be expressed
as a superposition of the eigen-functions of its parts like a
molecular orbital constructed as a linear combination of
atomic orbitals. Basically, it stems from the linearity of
electromagnetism and should hold as long as the exchange
remains linear. One should also mentioned that in quite
another context, that of contra-directional coupling, two-
mode CMTs are already known to hold in distributed
Bragg reflectors with an arbitrary high index contrast,14

opening a fascinating new field of investigation.15

One can ask oneself how the slab picture would be modi-
fied if some symmetry were broken. Actually, in the case of
non-identical slab waveguides (different indices or thicknes-
sess), deriving the modal condition remains straightforward,
but extracting simultaneously the coupling constant χ as well
as the detuning Δ requires some precaution: another condi-
tion may be called for. This problem is currently under
investigation.
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